Each question is of equal Marks (10 Marks)

Q. 1	Find the Fourier Series for $f(x)=e^{-x}$ in the interval $0<x<2 \pi$.
Q. 2	Expand $f(x)=x \sin x$ as a Fourier series in the interval $0<x<2 \pi$.
Q. 3	Find the Fourier series of $f(x)=2 x-x^{2}$ in the interval $(0,3)$. Hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots=\frac{\pi^{2}}{12}$.
Q. 4	Find the Fourier series of the function $f(x)=\left\{\begin{array}{cc}x^{2} & 0 \leq x \leq \pi \\ -x^{2} & -\pi \leq x \leq 0\end{array}\right.$.
Q. 5	Find the Fourier series of the function $f(x)=\left\{\begin{array}{cc}\pi x & 0<x<1 \\ 0 & x=1 \\ \pi(x-2) & 1<x<2\end{array}\right.$. Hence show that $\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}$.
Q. 6	Find the Fourier series of $f(x)=x^{2}$ in the interval $0<x<a, f(x+a)=f(x)$.
Q. 7	If $f(x)=\|\cos x\|$, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$, $f(x+2 \pi)=f(x)$.
Q. 8	For the function $f(x)$ defined by $f(x)=\|x\|$, in the interval $(-\pi, \pi)$. Obtain the Fourier series. Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$.
Q. 9	Given $f(x)=\left\{\begin{array}{rc}-x+1 & -\pi \leq x \leq 0 \\ x+1 & 0 \leq x \leq \pi\end{array}\right.$. Is the function even of odd? Find the Fourier series for $f(x)$ and deduce the value of $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$.
Q. 10	Find the Fourier series of the periodic function $f(x) ; f(x)=-k$ when $-\pi<x<0$ and $f(x)=k$ when $0<x<\pi$, and $f(x+2 \pi)=f(x)$.
Q. 11	Half range sine and cosine series of $f(x)=x(\pi-x)$ in (0, $)$
Q. 12	Find the Fourier series for the function $f(x)=\left\{\begin{array}{l}\pi x, 0<x<1 \\ \pi(x-2), 1<x<2\end{array}\right.$
Q. 13	Find the Fourier series for $\mathrm{f}(\mathrm{x})$ defined by $\mathrm{f}(\mathrm{x})=x+\frac{x^{2}}{4}$ when $-\pi<\mathrm{x}<\pi$ and $f(x+2 \pi)=f(x)$ and hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots . .=\frac{\pi^{2}}{12}$

Each question is of equal Marks (10 Marks)

Q. 14	Find the Fourier series for the function $f(x)=\left\{\begin{array}{l}x ; 0<x<1 \\ 0 ; 1<x<2\end{array}\right.$.
Q. 15	If $f(x)=x$ in $0<x<\frac{\pi}{2}$ $\begin{aligned} & =\pi-x \text { in } \frac{\pi}{2}<x<\frac{3 \pi}{2} \\ & =x-2 \pi \text { in } \frac{3 \pi}{2}<x<2 \pi \end{aligned}$ Prove that $\mathrm{f}(\mathrm{x})=\frac{4}{\pi}\left\{\frac{\sin x}{1^{2}}-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}-\right\}$
Q. 16	If f $\begin{aligned} \mathrm{f}(\mathrm{x}) & =\frac{x}{l} & & \text { when } 0<\mathrm{x}<1 \\ & =\frac{2 l-x}{l} & & \text { when } 1<\mathrm{x}<21 \end{aligned}$ Prove that $\mathrm{f}(\mathrm{x}) \frac{1}{2}-\frac{4}{\pi^{2}}\left(\frac{1}{I^{2}} \cos \frac{\pi x}{l}+\frac{1}{3^{2}} \cos \frac{3 \pi x}{l}+\frac{1}{5^{2}} \cos \frac{5 \pi x}{l}+\ldots \ldots ..\right)$
Q. 17	When x lies between $\pm \pi$ and p is not an integer, prove that $\sin \mathrm{px}=\frac{2}{\pi} \sin p \pi\left(\frac{\sin x}{1^{2}-p^{2}}-\frac{2 \sin 2 x}{2^{2}-p^{2}}+\frac{3 \sin 3 x}{3^{2}-p^{2}}-\ldots \ldots \ldots . .\right)$
Q. 18	Find the Fourier series for the function $f(x)=e^{a x}$ in $(-l, l)$
Q. 19	Half range sine and cosine series of $f(x)=2 x-1$ in $(0,1)$
Q. 20	Half range sine and cosine series of x^{2} in $(0, \pi)$
Q. 21	Find Half range sine and cosine series for $f(x)=(x-1)^{2}$ in $(0,1)$
Q. 22	Evaluate: $L\{\sin 2 t \cos 3 t\}, \quad L\left\{e^{-3 t}(\cos 4 t+\sin 2 t)\right\}$

Each question is of equal Marks (10 Marks)

Q. 23	Evaluate: $L\left\{\sin ^{2} 2 t\right\}, L\left\{e^{-2 t} \cos 3 t\right\}$
Q. 24	Evaluate: $L\left\{\frac{\sin 2 t-\sin 3 t}{t}\right\}, L\left\{t \int_{0}^{t} e^{-4 t} \sin 3 t d t\right\}$
Q. 25	Evaluate: $\quad L^{-1}\left\{\log \left(\frac{s+1}{s-1}\right)\right\} L^{-1}\left\{\frac{s^{2}+s+2}{s^{5}}\right\}$
Q. 26	Evaluate: $\quad L^{-1}\left\{\cot ^{-1} \frac{s}{a}\right\}, L^{-1}\left\{\frac{s-1}{(s-1)^{2}+4}\right\}$
Q. 27	Evaluate: $\quad L^{-1}\left\{\log \left(\frac{s+2}{s+3}\right)\right\}, L^{-1}\left\{\frac{s+2}{\left(s^{2}+4 s+5\right)^{2}}\right\}$
Q. 28	Evaluate: $\quad L^{-1}\left\{\frac{1+2 s}{(s+2)^{2}(s-1)^{2}}\right\}, L^{-1}\left\{\frac{s^{2}+s+3}{s^{6}}\right\}$
Q. 29	Evaluate: $L^{-1}\left\{\frac{(s+1)^{2}}{s^{3}}\right\}, L^{-1}\left\{\tan ^{-1} \frac{s}{a}\right\}$
Q. 30	Find the Laplace Transform of $f(t)$, where $\begin{aligned} \text { (i)f(t)} & =t \quad \text { if } \quad 0<t<\frac{a}{2}, \quad f(t+a)=f(t) \\ & =a-t \quad \end{aligned} \quad \text { if } \quad \frac{a}{2}<t<a$
Q. 31	Find the Laplace transform of the function $f(t)=\left\{\begin{array}{l} \sin \omega t ; 0<t<\frac{\pi}{\omega} \\ 0 ; \frac{\pi}{\omega}<t<\frac{2 \pi}{\omega} \end{array} \quad f(t)=f\left(t+\frac{2 \pi}{\omega}\right)\right.$
Q. 32	Use convolution theorem to find the Laplace Inverse Transform of

Each question is of equal Marks (10 Marks)

	(i) $\frac{s a}{\left(s^{2}-a^{2}\right)^{2}}$ (ii) $\frac{s-2}{s(s-4 s-13)}$
Q. 33	Use convolution theorem to find the Laplace Inverse Transform of (i) $\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}-b^{2}\right)}$ (ii) $\frac{1}{s^{2}(s-2)}$
Q. 34	Find the value of the integral using Laplace Transform technique. (i) $\int_{0}^{\infty} t e^{-2 t} \cos t d t$ (ii) $\int_{0}^{t} e^{-t} \frac{\sin t}{t} d t$
Q. 35	Solve the initial value problem $y^{\prime \prime}+5 y^{\prime}+2 y=e^{-2 t}, y(0)=1, y^{\prime}(0)=1$, Using Laplace transformation.
Q. 36	Solve the following Differential Equations using Laplace Transform technique. $\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=e^{t} \quad$ with $\quad x=2$ and $\frac{d x}{d t}=-1$ at $t=0$
Q. 37	Solve the following Differential Equations using Laplace Transform technique. $\frac{d^{2} y}{d x^{2}}+y=1 \quad$ with $\quad y(0)=1$ and $y\left[\frac{\pi}{2}\right]=0$
Q. 38	Evaluate: $\quad L^{-1}\left\{\frac{1+2 s}{(s+2)(s-1)} e^{-3 s}\right\}, L^{-1}\left\{\frac{(s+1)^{2}}{s^{3}} e^{-s}\right\}$
Q. 39	Form the partial differential equation of following: (a) $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ (b) $z=f(x+c t)+g(x-c t)$
Q. 40	Form the partial differential equation of following: (a) $2 z=a^{2} x^{2}+b^{2} y^{2}$ (b) $z=x+y+f(x y)$
Q. 41	Form the partial differential equation of following: (a) $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$ (b) $F\left(x y+z^{2}, x+y+z\right)=0$

Each question is of equal Marks (10 Marks)

Q. 42	Solve following partial differential equations : (a) $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$ (b) $x(y-z) p+y(z-x) q=z(x-y)$
Q. 43	Solve following partial differential equations : (a) $p y+q x=p q$ (b) $z=p x+q y+2 \sqrt{p q}$
Q. 44	Solve following partial differential equations : (a) $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\sin x \cos y+x y$ (b) $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\cos x \cos 2 y$
Q. 45	Solve following partial differential equations : (a) $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=e^{x+4 y}$ (b) $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=x^{3}+e^{x+2 y}$
Q. 46	(a) Solve: $\frac{\partial^{2} z}{\partial x \partial y}=e^{-y} \cos x$, given that $\mathrm{z}=0$ when $\mathrm{y}=0$ and $\frac{\partial z}{\partial y}=0$ when $\mathrm{x}=0$ (b) Solve: $\frac{\partial^{2} z}{\partial x^{2}}=z$ given that $z=e^{y}$ and $\frac{\partial z}{\partial x}=e^{-y}$ when $x=0$
Q. 47	Solve: $\frac{\partial z}{\partial x}=2 \frac{\partial z}{\partial y}+z$ where $\mathrm{z}(\mathrm{x}, 0)=8 \mathrm{e}^{-5 \mathrm{x}}$ using method of separation of variables.
Q. 48	Solve: $3 \frac{\partial z}{\partial x}+2 \frac{\partial z}{\partial y}=0$, where $z(x, 0)=4 e^{-x}$ by using method of separation of variables.
Q. 49	Solve: $\frac{\partial z}{\partial x}=4 \frac{\partial z}{\partial y}$ where $\mathrm{z}(0, y)=8 e^{-3 y}$ using method of separation of variables.
Q. 50	Attempt the following. 1) Express the function $f(x)=\left\{\begin{array}{l}1 ;\|x\|<1 \\ 0 ;\|x\|>1\end{array}\right.$ as a Fourier integral. Hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d \lambda$. 2) Find the Fourier sine transform of $e^{-\|x\|}$.

Each question is of equal Marks (10 Marks)

	Hence show that $\int_{0}^{\infty} \frac{x \sin m x}{i+x^{2}} d x=\frac{\pi e^{-m}}{2} ; m>0$.
Q. 51	Attempt the following. 1) Find the Fourier Transform of $f(x)=\left\{\begin{array}{l}1 ;\|x\|<1 \\ 0 ;\|x\|>1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{\sin \mathrm{x}}{x} d x$ 2) Find the Fourier integral represent for $f(x)=\left\{\begin{array}{ll}1-x^{2} ; & \|x\| \leq 1 \\ 0 ; & \|x\|>1\end{array}\right.$.
Q. 52	Attempt the following. 1) Find the Fourier integral represent for $f(x)=\left\{\begin{array}{l}\mathrm{e}^{a x} ; \text { for } x \leq 0, a>0 \\ \mathrm{e}^{-a x} ; \text { for } x \geq 0, a<0\end{array}\right.$. 2) Find the Fourier cosine transform of $f(x)= \begin{cases}1 ; 0 \leq \mathrm{x}<2 \\ 0 ; & x \geq 2\end{cases}$
Q. 53	Attempt the following. 1) Using Fourier sine transform of $e^{-a x}(a>0)$, show that $\int_{0}^{\infty} \frac{x \sin k x}{a^{2}+x^{2}} d x=\frac{\pi e^{-a k}}{2}(k>0)$. 2) Using Fourier Integral show that $\int_{0}^{\infty} \frac{\omega \sin x \omega}{1+\omega^{2}} d \omega=\frac{\pi e^{-x}}{2}(x>0)$.
Q. 54	Attempt the following. 1) Find the Fourier sine and cosine transform of $x^{n-1}(n>0)$. 2) Using Fourier integral representation, show that $\int_{0}^{\infty} \frac{\sin \omega \cos \omega x}{\omega} d \omega=\frac{\pi}{2}(0 \leq x<1)$

